NASICON Electrodes: A Low‐Temperature Sodium‐Ion Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metamaterials: Snapping Mechanical Metamaterials under Tension (Adv. Mater. 39/2015).

By exploiting snap-through instabilities, D. Pasini and co-workers design a damage-tolerant mechanical metamaterial that snaps sequentially under tension, thereby accommodating a very large deformation up to 150%. On page 5931, they describe how the nonlinear mechanical response of the metamaterial can be robustly programmed by tuning the architecture of its unit cell.

متن کامل

Quantitative full time course analysis of nonlinear enzyme cycling kinetics

Enzyme inhibition due to the reversible binding of reaction products is common and underlies the origins of negative feedback inhibition in many metabolic and signaling pathways. Product inhibition generates non-linearity in steady-state time courses of enzyme activity, which limits the utility of well-established enzymology approaches developed under the assumption of irreversible product rele...

متن کامل

High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense ...

متن کامل

In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling

The cyclic stress in lithium-ion battery electrodes induced by repeated charge and discharge cycles causes electrode degradation and fracture, resulting in reduced battery performance and lifetime. To investigate electrode mechanics as a function of electrochemical cycling, we utilize digital image correlation (DIC) to measure the strains that develop in lithium-ion battery electrodes during li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2021

ISSN: 1616-301X,1616-3028

DOI: 10.1002/adfm.202170070